B.Tech II Year II Semester (R15) Supplementary Examinations December 2017

ELECTROMAGNETIC THEORY & TRANSMISSION LINES

(Electronics & Communication Engineering)

Time: 3 hours Max. Marks: 70

PART - A

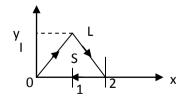
(Compulsory Question)

1 Answer the following: $(10 \times 02 = 20 \text{ Marks})$

- (a) State and explain the Coulomb's law.
- (b) Derive the Passion's and Laplace equations for electrostatic field.
- (c) State and express the Biot-Savart's law.
- (d) Write down the Maxwell's equations in word statement.
- (e) Define the uniform plane wave.
- (f) Define polarization. Explain different types of polarization.
- (g) Define the propagation constant in terms of primary constants.
- (h) Define the group velocity.
- (i) Define the stub.
- (j) Write down the applications of smith chart.

PART – B

(Answer all five units, 5 X 10 = 50 Marks)


UNIT – I

- 2 (a) Given the field $D=6\rho\sin\frac{1}{2}\phi\hat{a}_{\rho}+1.5\cos\phi\,\hat{a}_{\phi}c/m^2$, evaluate both sides of the divergence theorem for the region bounded by $\rho=2$, $\phi=0$ to $\phi=\pi$ and z=0 to z=5.
 - (b) At given points $A(5,70^{\circ},-3)$ and $B(2,-30^{\circ},1)$, find:
 - (i) A unit vector in Cartesian co-ordinates at A directed towards B.
 - (ii) A unit vector in cylindrical co-ordinates at A directed toward B.
 - (iii) A unit vector in cylindrical co-ordinates at B directed towards A.

OF

Express the vector field $\vec{D} = (x^2 + y^2)^{-1} (x\hat{a}_x + y\hat{b}_y)$ in cylindrical components and cylindrical variables. Determine the vector normal to $S(x, y, z) = x^2 + y^2 - z$ at point (1,3,0).

- Given that $\vec{F} = (x^2y\hat{a}_x y\hat{a}_y)$, find:
 - (a) $\oint_L \overrightarrow{F \bullet} dL$, where L is shown in the figure below.

(b) $\int_{S} (\nabla X \vec{F}) \cdot ds$, where S is the area bounded by L.

OF

A uniform line charge of 16 nC/m is located along the line defined by y = -2, z = 5. If $\varepsilon = \varepsilon_0$, find \vec{E} , at point P(1,2,3). Plane x + 2y = 5 carries charge $\rho_s = 6nC/m^2$. Determine \vec{E} at (-1,0,1).

Contd. in page 2

Code: 15A04403

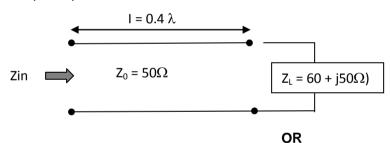
UNIT – III

A dielectric material contains 2 X 10^{19} polar molecules/m³, each of dipole moment 1.8 X 10^{-27} cm. Assuming that all dipoles are aligned in the direction of electric field $\vec{E} = 10^5 a_x$ V/m, find polarization \vec{P} and relative permittivity ε_r .

OR

Region 1 (z<0) contains a dielectric for which $\varepsilon_{\text{rl}} = 2.5$, while region 2 (z>0) is characterized by $\varepsilon_{\text{r2}} = 4$. Let $\overrightarrow{E_1} = -30a_x + 50a_y + 70a_z \frac{V}{m}$, find $\overrightarrow{D_2} \& \overrightarrow{P_2}$.

UNIT - IV


- 8 (a) Derive the equation for uniform plane wave in terms of H.
 - (b) A 100 MHz uniform plane wave propagates in a lossless medium for which ϵ_r = 5 and μ_r = 1 find V_p , β , λ , E_s , H_s .

OR

- 9 (a) State and prove the Pointing vector theorem.
 - (b) Write short notes on: (i) Surface impedance. (ii) Brewster angle.

UNIT - V

- 10 A lossless transmission line of electrical length = 0.4λ is terminated with a complex load impedance as shown in the accompanying figure below. Find the following using smith chart.
 - (a) Reflection coefficient at the load.
 - (b) The SWR on the line.
 - (c) The reflection coefficient at the input of the line.
 - (d) The input impedance to the line

Derive the transmission line equation for lossless line and obtain the expressions for propagation constant (γ) and Z_0 .
